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A Universal Performance Measure

1. Introduction

Many of the difficulties we encounter in performance measurement and attribution are

rooted in the over-simplification that mean and variance fully describe the distribution

of returns. It is a generally accepted stylised fact of empirical finance that few, if any,

would now challenge, that returns from investments are not distributed normally.

Thus in addition to mean and variance higher moments are required for a complete

description.

It is easy to illustrate the importance of higher moments. For example the two

distributions in Diagram 1.1 have the same mean and variance, however they differ in

skew, kurtosis and all higher moments and represent vastly different processes.

Though normality is now the standard model for returns distributions, some historic

series such as daily Gilts and Austrian government bonds were markedly bimodal, a

feature which arose from the account settlement practice of those markets.

Diagram 1.1  Two distributions with mean 10 and variance 152.

While one would not now expect to see financial returns series for a single security

following the bimodal distribution, portfolios can, of course, exhibit even more

complex behaviour. It is the fact that we cannot know the precise distribution of real

returns that makes the ability to deal with higher moments important. Practitioners are

well aware that the impact of higher moments can be significant. Over the last decade,
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we have seen many attempts to analyse and attribute returns from portfolios and

securities which by design seek to capture asymmetries in investment returns. This

has resulted in the current fashion for style analysis. Much of this work has focussed

upon “hedge” funds. The central problem is that the mean and variance toolkit is

simply inadequate for such analysis. Some traditional asset “classes”, such as

corporate bonds, also require the consideration of higher moments in order to fully

understand their performance characteristics.

By way of illustration, we shall show the effect of uncertainty and the higher moments

of a returns distribution upon the value of a portfolio and demonstrate some of the

shortcomings of traditional measures such as the Sharpe ratio.

In Table A below, in each case we are comparing an arbitrary 36 period set of returns.

They have been chosen such that the expected value is the same for each but the most

likely or terminal values differ by their higher moments. The difference between these

terminal values and the expected value may be considered as effects due to

uncertainty1.

If we begin by preferring higher most likely terminal values, it is clear that we should

rationally dislike the second and fourth moments2 (variance and kurtosis) of the

returns distributions in these examples as these moments unequivocally lower the

most likely outcome. The third moment, skewness, increases the terminal, most likely

value when positive and decreases it when negative.

The Sharpe ratio cited uses a risk-free rate of zero. Notice that it is the same in three

instances even though terminal values differ markedly. Moreover in the case of

negative skewness, the Sharpe ratio is better than in cases with higher most likely

values3.

These examples show that we should therefore expect, under typical market

conditions, high returns4 from securities or instruments which have high variance,

high kurtosis and negative skewness as these all tend to increase risk. The impact of

these higher moments is, of course, invisible to the Sharpe ratio.
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Table A

Certain Case A Case B Positive
Skew

Negative
Skew

Kurtosis

Mean 10% 10% 10% 10% 10% 10%
Volatility 0 50.71 20.28 50.71 50.69 50.71
Skewness 0 0 0 0.0227 -0.0371 0
Excess
Kurtosis

0 -2.12 -2.12 -2.065 -2.046 -2.011

Expected
Value

30.91 30.91 30.91 30.91 30.91 30.91

Most Likely
Value

30.91 0.4791 16.88 0.4863 0.4163 0.4539

Series (36) 10 certain +60 –40
Equi

+30 –10
Equi

Complex Complex Complex

Sharpe
(Zero)

Infinite 0.1972 0.4931 0.1972 0.1973 0.1972

There is a very substantial body of work that seeks to extend the mean-variance

framework of modern finance to encompass higher moments. The theoretical

difficulties within that literature arise from the need to specify the form of a utility

function and the substitution across moments. In addition, there is a serious obstacle

to incorporating the effects of higher moments in performance measurement, as data

are often both sparse and noisy. This means that estimation of the moments is error

prone and any attempt to attribute performance characteristics to them individually is

therefore difficult if not impossible to do reliably.

This paper introduces a performance evaluation measure, Γ , which captures the

effects of all higher moments fully and which may be used to rank and evaluate

manager performance. It avoids the problem of estimating individual moments by

measuring their total impact, which is of course precisely what is of interest to

practitioners. It distinguishes readily between distributions such as those in Diagram

1.1. Using returns data for actual financial time series for hedge funds, as we show

later in applications, the additional information contained in the Gamma measure

results in preference orderings that differ from the Sharpe ordering. Our approach also

avoids the need for utility functions. In order to evaluate a collection of portfolios our

performance evaluation function, Γ , will need just the simple decision rule that we

prefer more to less, that we are not satiated5.
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Our performance measure is a natural feature of the returns distribution. In fact its

construction from a returns distribution is entirely canonical, requiring no choices and

admitting no ambiguity which is not already present in the data. As such it may be

regarded as an extension of the notion of the cumulative distribution. It is a function

that may be evaluated at any value in the range of possible returns, so that it allows

performance comparisons with respect to any ‘risk’ threshold in this range. The use of

a function of returns rather than a single number to measure performance is essential

as our examples show.

2. The Gamma Measure

We begin with an elementary heuristic. A direct analogy might be a simple bet. The

investment situation differs from a standard gamble in that the “stake” is unknown at

the outset.  We wish to know what we stand to win if we win and what we stand to

lose if we lose. In order to investigate this we need only specify the loss threshold L.

This is the conditional expected return given loss. The return expectation is the

conditional expected return given gain rather than the unconditional mean of the

distribution. This is illustrated below, as diagram 2.1:

Diagram 2.1

The diagram above shows the conditional expected returns given loss and no loss for

an arbitrary distribution of returns. The partitioning of the distribution by the loss line

(L) may be around a zero return as would be implicit in the gambling analogy or it

may be any other exogenously specified level. This may, for example, be the return

from a benchmark index or an absolute rate of return such as that used in actuarial

Loss (L)

Expected  Return
Given Loss

Expected Return
Given No Loss

Return

Probability
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assumptions. It should be immediately recognised that this partitioning changes both

expected gain and expected loss as it is varied.

The ratio of these two returns is directly analogous to the odds in a standard bet. If we

now add consideration of the likelihood of each expectation, through a likelihood

ratio, we have a measure of the quality of the bet taken, or in investment terms the

portfolio performance. The likelihood ratio is the ratio of the areas to the right and left

of the partitioning (L) in the diagram above. This statistic, which we shall refer to as

SΓ
6

 , is given by
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where F is the cumulative distribution of the returns series. Graphically this statistic

may be illustrated (Diagram 2.2) in terms of F as follows. The SΓ  statistic is the ratio

of the crosshatched and striped areas.

Diagram 2.2

This graphical representation makes obvious the inadequacy of using the conditional

expectation in the formulation presented as Equation [1]. The SΓ  statistic when

Return

Expected Gain
Given Gain = g

L

0

1

Probability

Expected Loss
Given Loss = l

Likelihood of Gain  = (1 – F(L))

Likelihood of Loss = F(L)
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calculated as the ratio of the two areas omits some information and introduces some

spurious elements. For instance we could equally well have used the probability

weightings F(l) for the loss (as this is the probability of a return no greater than l) and

(1-F(g)) for the gain (as this is the probability of a return no less than g). This would

lead to the following diagram (diagram 2.3).

Diagram 2.3

However, we may take the concept a little further and correct for these failings as is

illustrated below as diagram 2.4. We need only consider the limit in which the unit of

gain or loss is allowed to tend to zero and sum the gains and losses with their

appropriate weights.

Diagram 2.4 L
0

1

Probability

Return

Return

Expected Gain
Given Gain = g

L

0

1

Probability

Expected Loss
Given Loss = l

Likelihood of Gain  = (1 – F(g))

Likelihood of Loss = F(l)
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The Gamma statistic will now be defined as the ratio of the two areas, striped and

crosshatched. Mathematically this formulation of Gamma may be expressed as:

[ ]

∫

∫ −

=Γ
L

a

b

L

drrF

drrF

)(

)(1

[2]

where the cumulative distribution F is defined on the interval (a,b). It is

straightforward to see that this is the limiting case of the constructions above 7 .

All available information from the returns distribution, including higher moments, is

contained in the cumulative distribution and hence is encoded in Γ . We shall illustrate

this point later with a range of examples.

No parametric assumptions are needed and no constraints are placed upon the form of

the distribution. The use of the statistic for choice is just a simple variation upon the

use of stochastic dominance rules in decision theory8. In the case where the interval

(a,b) is infinite  there are distributions 9 for which the integrals above do not exist, but

some elementary assumptions can exclude these and in practice existence presents no

problems since we work with discrete return observations.

Assuming the convergence of the integrals, Γ  is a natural feature of the underlying

probability distribution. It is important to observe that, because the loss threshold can

be any number, Γ is a function of the return level L. In fact, as we indicate below, Γ is

a smooth monotone decreasing function from (a,b)  to (0,∞) . As we show in what

follows, this function and its derivatives with respect to L have natural financial

interpretations.

We will also show that regardless of the underlying distribution, Γ  takes the value 1

at the distribution’s mean µ . Thus, as in the case of the Sharpe ratio, the single

number Γ(µ)  is inadequate to distinguish between distributions which have the same

mean and variance but differ in their higher moments. With the risk threshold set at

the mean, all bets are fair, a sidelight on the world of Sharpe and Markowitz and of



January 2002   Comments and Criticism Invited
keating@risk.demon.co.uk

9

course a martingale property. Nevertheless, the function Γ(L)  does encode the

differences between such distributions as we illustrate in diagram 2.5 with the Gamma

measures corresponding to the distributions of diagram 1.1 around their common

mean of 10. Notice that as we move across the risk threshold our preference may

change from one portfolio to another. This shift is a higher moment effect and not

seen by the Sharpe measure. We provide some additional examples in applications

and appendices later.

Diagram 2.5 The Gamma measures for the distributions of Diagram 1.1

There are many close relations to this ratio discussed in the downside and shortfall

literatures. Perhaps the most common criticism of these downside-type measures is

that the sample return set is small or even empty. It is commonplace to see parametric

methods10 imposed, such as the fitting of a three parameter log-normal distribution11.

It is almost surely better to recognise that if a sample period contained no returns

lower than the risk threshold, it was an unparalleled opportunity to borrow and

profit12. The fundamental difficulty is that the sample set of return observations is

insufficient to define the full stationary distribution13. This criticism of course holds

true of any statistical analysis of portfolio returns.

Concerns over the existence and accuracy of estimated values of higher moments that

render other approaches based upon the individual moments questionable are not

relevant here. Although all of the information on higher moments is encoded in the

formulation of Γ , it is obtained through the cumulative distribution and hence there is
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no need to know any of the individual moments in order to observe their effect in

total.

We also observe that the definition of Γ  is canonical given a returns distribution. As

any invertible transformation of returns gives rise to an induced cumulative

distribution, it also gives rise to an induced Gamma measure via this canonical

construction. This means that one may transform the returns distribution at will prior

to calculating the Gamma measure. For the purposes of comparison all that is

necessary is that the same transformation be applied to all of the returns series in

question. The effect of a transformation of the returns is to introduce a function of L

rather than L itself as a risk threshold. In other words, we may introduce individual

risk preferences by such a transformation.  This may be thought of as providing

alternative utility functions and has the effect of modifying means and variances as

well as higher moments. We defer discussion of this point to a later paper.

3. Some elementary properties of the Gamma measure

We indicate some of the properties of the Gamma measure here. A more detailed

exposition is left to another paper14. We begin by examining the sensitivity of Gamma

to changes in the risk threshold L. Let I1 = F(r)dr
a

L

∫  and I2 = [1− F(r)]dr
L

b

∫ , so 
1

2

I
I

=Γ .

We may differentiate this expression with respect to L to obtain 
2
1

2
1

1
2

I

I
dL
dI

I
dL
dI

dL
d −

=Γ , or

more explicitly, 
2
1

21 )(]1)([
I

ILFILF
dL
d −−

=
Γ . In particular we see that 

dL
dΓ is as smooth as

F(L) and that 0<
Γ

dL
d everywhere.

Thus )(LΓ is a smooth monotone decreasing function from (a,b)  onto (0,∞)  from

which it follows that it takes the value 1 precisely once. It is a consequence of the

definitions of I1and I2  that the mean satisfies )0()0( 12 II −=µ and one may deduce from

this and the definition of the Gamma measure that 1)( =Γ µ .
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Unless the cumulative distribution fails to be differentiable, the Gamma measure has

derivatives of at least second order and these may also be used to distinguish between

distributions which differ in their higher moments, as we illustrate in appendix B.

We may also consider the variation of the Gamma measure as the underlying

cumulative distribution varies according to various scenarios. This is also

straightforward but we leave it to another paper15.

The Gamma measure is an affine invariant of the returns distribution. That is, for any

affine change of variable, BArrr +=→ )(ϕ , there is an induced cumulative

distribution and the Gamma measure for the induced distribution, ˆ Γ  satisfies

)())((ˆ LL Γ=Γ ϕ . Conversely, if this relationship is satisfied by any change of variable

ϕ   then  BArr +=)(ϕ .

The variation of Gamma with time is also meaningful as 
dt
dΓ contains the full

information set16 of the series, such as auto-correlations of all orders, and when used

to compare with another security or portfolio of similar periodicity, must also contain

the cross-relations. Clearly the integral of Gamma with respect to time is the

normalised value of the security, firm or portfolio as a function of the risk threshold.

The cumulative time evolution of Gamma for two index returns series evaluated at a

risk threshold of zero and the equivalent Sharpe ratio are shown in the section

Applications.

In common with most downside or lower partial moment measures, the components

of Gamma ( 21, II ) are sub-additive 17. Strictly the ratio is, of course, dimensionless.

The measure may also be directly related to other techniques in common use such as

tracking error18.

The overwhelming lesson from modern finance is that the state of the economy in

which a return is received is a prime determinant of its value19. With the Gamma

function this dependence may be contained within a transformation of the “risk”

threshold, L, which may also be thought of as a utility function. It is comparatively



January 2002   Comments and Criticism Invited
keating@risk.demon.co.uk

12

trivial to revert to the more familiar ground of a fixed risk free rate or even the returns

from some passive index as a proxy for the wealth and consumption capacity20.

For the purposes of comparison, the only proviso which we need is that comparison is

only valid between distributions at a common risk threshold. In the applications which

follow, we also report the hedge fund indices relative to the return on the MSCI index

for the purpose of illustration.

4 Applications

Both initial applications are to a set of portfolio returns for a range of hedge fund style

indices from two vendors and two traditional comparisons, MSCI and SWGBI. The

data is monthly for the period beginning January 1993 and ending April 2001, 100

data points for each series. The data was presented blind and nothing is known of the

portfolios beyond their name descriptions. The descriptive statistics are presented as

Table 01. It is evident that these distributions are far from normally distributed but the

Jarque Bera statistics are not reported for brevity. A pseudo-Sharpe ratio, where the

risk-free rate is zero, is presented. These values range from 1.70 to 0.23. It is

interesting to note that by the Sharpe measure, and also by the Gamma measure which

includes higher moment effects, the bond and equity indices are the worst performing

portfolios. Auto-correlation values for the series and the squared series were also

computed. Positive (0.20 – 0.55) first order auto-correlation was evident but perhaps

more interestingly similar pairs such as ACSA – HCSA return differing values - 0.40

and 0.55 respectively in this case21. The squared series showed no evidence of

statistically significant auto-correlation.

The overwhelming impression is that, though these are competing suppliers of index

data series, there is a considerable disparity between them. There is an important

caution for anyone comparing a portfolio with its style index here. The style index

chosen is critical. If we compare the obvious pairings and consider the hypothesis that

each of the two sequences is a sampling from some common distribution, the

hypothesis is rejected (at 5%) for all pairs except AMA-HMA, where the difference

appears to be a simple bias22. It is interesting to note that the government bond index

exhibits small positive skewness as might be expected from the effect of convexity.
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Somewhat more surprisingly the world equity index exhibits negative skewness and

proved difficult for the traditional fund manager23 to outperform over this period.

The (product moment) correlations of the data sets were calculated and are presented

as table 02. The point to note here is that the equity and world government bond

indices were in line with historic relations at 0.24. The hedge fund strategies showed

negative correlation with the world government bond index. Perhaps the most

alarming feature of this matrix is that the correlations with other strategies from the

same data supplier were typically higher than correlations across pairs.

A principal components analysis was also conducted. Table B, below, lists the first six

values and their cumulative explanatory power. The surprise here, particularly so as

there are pairs within the data, is that the explanatory power of the eigenvalues

diminishes very slowly.

Eigenvalues 1 2 3 4 5 6

Value 9.3869 1.6709 1.3582 1.0966 0.7814 0.7344

% of variability 52.15 9.28 7.55 6.09 4.34 4.08

Cumulative % 52.15 61.43 68.98 75.07 79.41 83.49

Table B

The correlation to factors matrix is given as table 03. The points to note in this are that

the world government bond index is essentially uncorrelated to the first factor, while

with the exception of index HMN, all others are strongly positively so. The second

factor has equity, global bonds and HMN responding positively strongly while ACSA

responds strongly negatively. In the table some of the more intriguing relations have

been printed in bold type. For example, indices AM and HM share a response to

factor 4 in the 10% - 25% explanatory range. The overwhelming impression from this

factor matrix is that noise is dominant.

“Risk” Threshold – Zero

The Gamma and Sharpe ratios with a risk free of zero with the “risk” threshold set at

zero are tabulated below, where the left hand sequence lists the indices ranked by their

Sharpe ratio and the right hand lists the indices ranked by their Gamma ratio.
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Sharpe Indicator Gamma

ARV 1.699 1 ARV 43.98

ACSA 1.338 0 AELS 20.33

AMA 1.245 0 ACSA 19.19

AELS 1.214 0 AMA 18.04

HMA 1.040 0 AED 12.80

AED 0.964 0 HMA 11.94

HCSA 0.741 0 ADIST 6.19

ADIST 0.703 0 HED 6.04

HED 0.652 0 HDIST 5.73

HDIST 0.608 0 HCSA 5.69

HMN 0.544 0 HH 4.16

HH 0.533 0 HMN 3.79

HM 0.475 1 HM 3.79

AM 0.459 1 AM 3.27

ASS 0.399 1 ASS 2.85

HHLB 0.284 0 SWGBI 2.11

SWGBI 0.281 0 HHLB 2.06

MSCI 0.232 1 MSCI 1.78

The column marked indicator takes the value 1 when the Sharpe ratio agrees with the

Gamma measure as to rank order. There are just five points of agreement, a clear

indication of the importance of higher moment effects. The Kendall and Spearman

rank correlations are 0.89 and 0.97.

Of course, we should not only be considering the ordering by Gamma at a single

threshold but rather the Gamma function over the range of returns, as is illustrated as

Diagram 4.1 below.

G a m m a  R a n g e s

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A E D ARV A S S M S C I S W G B I

Threshold
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Diagram 4.1 Gamma as a Function of Return Threshold

For clarity, this shows only a selection of the index sequences over the range of

returns experienced, on a logarithmic scale. Points where these curves, the Gamma

measures, cross are indifference points for choices between particular portfolio

pairings. In the broadest of terms, the steepness of the Gamma function is a measure

of its risk. The steeper, the less risky.  Though not shown here, the majority of the

hedge fund indices are steeper than the SWGBI and MSCI, in the manner of ARV and

AED above. The index ASS above seems to offer true value, being most consistently

better than the MSCI. Above its mean, a steeply sloped Gamma measure also implies

a very limited potential for further gain.

At threshold –1, a high risk tolerance, the preference ordering is ARV, AED, SWGBI,

ASS, MSCI while at threshold +2, the preference ordering is ASS, MSCI, AED,

SWGBI, ARV.

Comparison of the indifference points based upon the Sharpe measure, where the risk

free rate changes, and the Gamma function is also possible as is illustrated in Diagram

4.2 below. The data-set here consists of a UK equity index, an international bond

index and a UK property index. This diagram has a log scale for the Gamma functions

and a linear scale for the Sharpe ratio.

Diagram 4.2
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Notice that none of the indifference points are coincident, again illustrating the

importance of the higher moment information which the Gamma measure

incorporates.

“Risk” Threshold - MSCI returns

The second application uses the return from the MSCI as its “risk” threshold. The

descriptive statistics for these distributions are appended as table 04. The tabulation

below again has the Sharpe ordering to the left and the Gamma ordering to the right.

Gamma Indicator Sharpe
HH 1.58 1 HH 0.17
HM 1.43 0 ASS 0.14
ASS 1.41 0 HM 0.13
AMA 1.39 1 AMA 0.13
AED 1.36 1 AED 0.12
AM 1.35 1 AM 0.12
ACSA 1.32 1 ACSA 0.11
ADIST 1.29 1 ADIST 0.10
ARV 1.26 0 HED 0.09
HED 1.26 0 ARV 0.09
AELS 1.18 0 HHLB 0.07
HHLB 1.18 0 AELS 0.06
HMA 1.10 1 HMA 0.04
HDIST 1.03 1 HDIST 0.01
HCSA 1.03 1 HCSA 0.01
HMN 0.84 1 HMN -0.07
SWGBI 0.79 1 SWGBI -0.09
There is once more some disagreement between the two rank orderings, due to higher

moment effects.

A selection of the Gamma functions for these MSCI relative portfolios is shown

below as Diagram 4.3. In order to facilitate comparison with Tracking Error type

measures, we present these demeaned or normalised.

0 . 0 0 1

0 . 0 1

0 . 1

1

1 0

1 0 0

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
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Diagram 4.3 Demeaned Gamma functions for a selection of MSCI relative indices

Tracking Error

As Tracking Error is now a popular measure of portfolio performance we shall also

report the rank ordering of these MSCI relative portfolios by Tracking Error24 and by

the Sharpe and Gamma measures at threshold zero.

Tracking
Error

Gamma Sharpe

HHLB 1 12 11
HH 2 1 1
HED 3 10 9
AED 4 5 5
ADIST 5 8 8
HM 6 2 3
AELS 7 11 12
HDIST 8 14 14
AMA 9 4 4
HMA 10 13 13
AM 11 6 6
ARV 12 9 10
ASS 13 3 2
HCSA 14 15 15
ACSA 15 7 7
HMN 16 16 16
SWGBI 17 17 17

Notice that the only points of agreement between the rank ordering by Tracking Error

by Sharpe and by the more advanced Gamma measure are for the two poorest

performing portfolios HMN and SWGBI. We report the Kendall and Spearman rank

correlation statistics below:

Kendall's rank correlation coefficient :

Tracking
Error

Gamma Sharpe

Tracking
Error

1 0.3088 0.3235

Gamma 0.3088 1 0.9559
Sharpe 0.3235 0.9559 1

Spearman's rank correlation coefficient :

Tracking
Error

Gamma Sharpe

Tracking
Error

1 0.4093 0.4289

Gamma 0.4093 1 0.9926
Sharpe 0.4289 0.9926 1
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Here, though the principal point to note is only that Tracking Error is poorly

correlated with either Sharpe or Gamma performance measures, it is hard not

conclude that Tracking Error is a very poor performance measurement criterion or

tool.

The final illustration is the time evolution of the cumulative Gamma measures of the

MSCI and SWGBI, at risk threshold zero, and for comparison their Sharpe analogues

at zero risk free, which is shown below as Diagram 4.4. Here it is evident that the

Sharpe measure captures much, but no means all, of the value evolution.

Diagram 4.4: A Comparison of the Cumulative Gamma and Sharpe Measures
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Conclusions and Further Work

We have introduced a simple measure of performance which is both natural from the

standpoint of probability and statistics and heuristically appealing in its financial

interpretation. It is defined in the most basic of terms but captures all higher moment

information in a distribution of returns. It is broadly in the spirit of the downside and

related literature, but could also be related to the stochastic dominance and decision

literature.

We have applied this to a set of hedge fund index returns. We accept that these returns

sequences have survivor and other biases present but for pedagogic purposes they

suffice. The results, based on the simplest of decision rules, namely that we prefer

more to less, show a markedly different order of preference from more traditional

measures such as the Sharpe ratio or tracking error. In the case of the Sharpe ratio,

this difference arises from the additional higher moment information which the

Gamma measure captures. The presence of such effects in real data is, we trust,

convincing evidence for the improvements in performance measurement which the

Gamma measure provides.

We have also demonstrated, with examples from analytic probability distributions,

that the Gamma measure is a powerful tool for the capture of higher moment effects.

A number of most important basic properties of the Gamma measure have been

stated. The affine invariance of Gamma allows comparisons to be made in a way that

is independent of scaling and translations of the underlying returns or equivalently, of

the risk threshold.

The canonical nature of Gamma also provides for additional performance measures to

be induced from more general transformations of the returns distribution and these

may be interpreted as alternative utility functions encoding risk preferences or

tolerances. The induced Gamma measure may be used to provide a consistent

performance ranking for each such risk adjustment. This is a subject for further

investigation.
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In this paper we have not considered in any detail, either time serial behaviour or

portfolio optimisation; these will be the subject of further, later papers. A more

advanced analysis of the properties of Gamma and its statistical characteristics is the

subject of Cascon, Keating and Shadwick 2001.

The most obvious further requirement is for a more advanced technique for the

estimation of stationarity which explicitly considers the higher moments. The ideal

would provide some indication of the likelihood of stationarity based upon prior

arrivals, but this is a non-trivial affair.  It seems likely that a frequency domain

analysis of Gamma would provide some useful insights.

The gain-loss literatures, such as Bernardo and Ledoit, already provide some insights

as to how the Gamma measure might be used in asset pricing. An unpublished work

of Agarwal and Naik extends that literature to optimal asset allocation25.

The most obvious extension is to performance attribution. We might have followed

Hicks and Marschak26 in the observation that preferences are a function of all of the

moments of a returns distribution and have demonstrated earlier why that might be

rational choice. We might then have simply noted that these are a function of the

moment generating function of the returns distribution and in turn the characteristic

and cumulative density functions. The obvious extension from there is to the

frequency domain and examination of the spectra of the returns series, where the

limiting requirement of most techniques applied is only covariance stationarity.

Perhaps the most interesting hypothesis to be investigated is that the activity in funds

where higher moments are significant is directly related to the sale of liquidity and

that will take us into the monetary economics and possibly the causal identification of

the factors driving performance.

One further avenue for investigation is that of behavioural finance, where, with the

higher moments now accounted for, we might investigate by way of the penalty

function the nature of some of the irrationality they claim.
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Insert tables 1- 4
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Appendix A: Gamma and Markowitz Frontiers

For two returns series, A and B, which are negatively correlated, we show the frontier

achieved by weights varying from [0% A, 100% B] to [100% A, 0% B] in 5% steps:

As is usual with these diagrams, the vertical axis is return (in %) and the horizontal

standard deviation of returns (in %). The square is the optimal portfolio allocation

given a risk-free return of 0%, a mixture of 50% A and 50% B. The Gamma optimal,

the circle, is a significantly different asset allocation, (35% A and 65% B). We now

present the Gamma analogue of this diagram:
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The vertical axis is the value of the upside or downside, 2I or 1I earlier. The horizontal

axis is the proportion of asset A in the portfolio mix. The dotted triangular marked

line is the upside value for differing mixes. The continuous square marked line is the

downside value for differing mixes. The heavy lozenge marked line is the Gamma

function. Note that this is infinite at and between portfolio mixes of 35% and 65% A.

In this range the effects of diversification mean that the portfolio has no downside,

and the downside function is zero in this range. Using our preference for more rather

than less, we should therefore prefer the portfolio 35% A and 65% portfolio B,

marked as a circle, rather than the Markowitz optimal portfolio of 50% A and 50% B,

marked as a square. We are in fact choosing among “free lunches” as there is no

downside risk present.

Notice also that the traditional risk-return framework does not suggest at any point

that the portfolio has no (downside) risk. The risk as measured by the standard

deviation of returns is always positive.

Asset allocation and portfolio optimisation will be the subject of another later paper.
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Appendix B

We illustrate the effect of higher moments on the Gamma measure in this appendix.

For this purpose we have used analytic distributions constructed from linear

combinations of normal distributions.

We first consider the behaviour of the Gamma measure for normal distributions as

their variance changes at a common mean. Diagram B.1 shows Gamma for three

normals, of mean zero, with standard deviations of 5,10 and 15, shown dotted, dashed

and solid respectively. The reversal of preferences across the mean is the effect of

variance. On the upside, increased variance provides more chance of gain, while on

the downside it provides , symmetrically, more chance of loss. The smaller the

variance, the more negative the slope of the Gamma measure.

Diagram B.1:  Gammas for normals of mean zero and variance 5,10 and 15

We next consider the effects of skew and kurtosis. More precisely, as the Gamma

measure responds to the effects of all moments, we can illustrate the effects of third

and higher moments and fourth and higher moments.
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First we make a comparison of the Gamma measures for distributions with skew

whose kurtosis is the same as a normal with the same mean and variance. This

illustrates the impact of skew and moments of fifth and higher orders.

Diagram B.2: Two distributions with the same mean, variance and kurtosis

The  skewed distribution in diagram B.2 has the same mean, 2.5, variance, 24  and

kurtosis, 3 as the normal distribution shown by the solid curve. The skewness is 0.86.

Thus this distribution differs from the normal only in its skewness and fifth and higher

moments.

The Gammas corresponding to the these distributions are shown in Diagrams B.3 and

B.4. While there is a separation in the Gamma curves away from the mean, the

differences around the mean are small. The shapes of the curves differ strongly even

here however as the derivatives of Gamma with respect to L, illustrated in Diagrams

B.5 and B.6 indicate.
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Diagram B.3: Gammas for the distributions in Diagram B.2

Diagram B.4: Gammas for the distributions in Diagram B.2
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Diagram B.5: First derivatives of Gamma with respect to L

Diagram B.6: First derivatives of Gamma with respect to L

The second derivative behaviour is even more markedly different for the skewed
distribution.
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Diagram B.7: Second derivatives of Gamma

Finally we make a comparison of the Gammas for three symmetric distributions with

the same mean and variance and kurtosis of 3, 5.9 and 11.8. The differences in the

Gammas are therefore produced by kurtosis and by sixth and higher even moments.

Diagram B.8: Symmetric distributions differing in kurtosis and higher even moments
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As diagrams B 9,B.10 and B.11 show, although on very different scales, the Gamma

measure displays significant differences due to these higher moment effects. The

asymptotic rankings are as indicated in B.9 and B.11, corresponding to the higher

probability of large losses and gains increasing with kurtosis. The higher kurtosis

Gammas each cross the Gamma for the normal distribution in three places and

themselves cross three times, at +/-20 and at their common mean of 0.

Diagram B.9: Gammas for the distributions of Diagram B.8
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Diagram B.10: Gammas for the distributions of Diagram B.8

Diagram B.11: Gammas for the distributions of Diagram B.8
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The second derivative behaviour here may be contrasted with that in Diagram B.7.

Although the two cases have large differences in variance, the effect seen here is

primarily due to skew and higher odd moments.

Diagram B.12: Second derivatives of Gamma with respect to L for the distributions of

Diagram B.8.

                                                                
1 The expected value of any of the series listed is 36]1.1[ , while the most likely value in case A

is 1818 ]6.0[]6.1[ and 1818 ]9[.]3.1[  for case B and so on. The row labelled Series is a succinct description
of the series of returns which generates the descriptive statistics. For the skewed and kurtotic examples
the series are irregular.

2 In point of fact, using the measure Gamma which we shall subsequently develop, we can
illustrate that this is not generally true but depends upon the level of the “risk” threshold, which in this
instance is a zero return. See appendix B.

3 The robustness of the Sharpe measure is in large part because the events which lead to
skewness and asymmetry tend to be large relative to the average and when such an event occurs, the
variance of the distribution also increases. Similarly events which change kurtosis will also be reflected
in the variance, and kurtosis is also affected by a skewness event. In other words, the variance or
standard deviation already captures some but by no means all of these effects. Disaggregating these
effects, as we might wish if we were to specify a model which considers the effects of each central
moment separately and the rates of substitution across them, is a non-trivial econometric exercise. It is
also worth noting that the presence of asymmetry in the distributions of returns renders suspect the use
of the product moment correlation as a measure of dependence as the distributions are no longer jointly
elliptical.
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4 See also: Scott R.C. and Horvath P.A. “On the Direction of Preference for Moments of Higher
Order than the Variance.” Journal of Finance Volume 35, Issue 4, pp 915 – 919 Sep 1980.

5 Quadratic utility does not satisfy the non-satiation property.

6 Bernardo and Ledoit (see below) consider a gain / loss function, which is defined as the
expected positive excess returns divided by the expected negative excess returns under some risk

adjusted probability measure. This suffers from the difficulty that their ratio 
]~[*
]~[*

−

+

xE
xE

is not continuous

and that the derivatives do not therefore exist. This is not a problem for the measure that we shall settle
upon.

A.E. Bernardo and O. Ledoit “Gain, Loss and Asset Pricing” Journal of Political Economy,
2000 Vol. 8 No 1 pp 144 – 172

7 This follows from the definition of the Riemann integral.

8 See: V. Bawa and J. Lindenberg, “Capital Market Equilibrium in a Mean-Lower Partial
Moment Framework” Journal of Financial Economics 5 pps 189-200 1977. See also appendix B for a
cursory examination of the role of crossings.

9 A note on the convergence of the integrals:

Let p(x) be the underlying probability distribution so that the cumulative distribution function

is given by ∫
∞−

=
r

dxxprF )()( . This is finite but it is possible that ∫
∞−

=
L

drrFI )(1 will not converge. For

example unless p(x) decays faster than
2

1
x

 as x → −∞ , F(r) will asymptotically approach 
r
1

or worse

as r → −∞  and similarly 2I  will diverge unless p(x) decays faster than 
2

1
x

.

Even if the tail decay does not satisfy this condition it is of course possible that Γ will be
defined in a Cauchy principal value sense – i.e. as
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1

2

AI
AI

A ∞→
 , where ∫

−

=
L

A

drrFAI )()(1  and ∫ −=
A

L

drrFAI )](1[)(2  .

10 There are also some serious statistical sampling theory issues here. For example, the sample
standard deviation estimator is an estimator of sigma but not unbiased and moment estimators may be
bounded by the sample size – a sample of 40 observations cannot produce a skewness of larger than
6.325 regardless of the true skewness of the distribution. For further detail see: Wallis J., Matalas N.
and Slack J. “Just a Moment!” Water Resources Research, 10, pp 211- 219. 1974

11 The three parameter log-Normal uses mean, standard deviation and an extreme value. See
Aitchinson J. and J. Brown, “The lognormal distribution” C.U.P. 1957

12 A Gamma value of 0 arises when there are no positive returns. A value of 1 for the Gamma
statistic is the family of martingales and of course, an infinite value of Gamma is a riskless investment
with a positive return, the free lunch of popular finance. This arises when the risk set is empty. In
between these values, we have a range of quasi arbitrage opportunities, relatively high returns for a
given level of risk. There are obvious applications to the pricing of non-replicable option portfolios.
We can show that portfolios of relatively simple assets can give rise to very high and even infinite
Gamma values (See appendix A).

13 It is also worth noting that the standard tests for stationarity operate only upon the mean and
variance of the distribution.

14 A. Cascon, C Keating and W. Shadwick  “Properties of the Gamma Measure” Preprint
Finance Development Centre 2001
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15 A Cascon, C. Keating and W Shadwick 2001 op cit

16 In the limit, 
dt
dΓ

is the innovation.

17 The failure of the sub-additivity test is perhaps the most damning criticism of Value at Risk.
The practical consequence that the risk of a portfolio may be greater than the sum of its parts is
sobering, if perhaps not significant in most applications.

18  The commonly used tracking error measure, the square root of the variance of the difference
portfolio, assumes a common location or mean for the portfolio and its comparator index. More
generally this should be the square root of the sum of the mean squared plus the variance and even then
we need the value of the mean or at least its sign to know whether the manager is adding or subtracting
value relative to the passive. The Gamma statistic or some risk adjusted counterpart centred on the
passive index give us direct measures of relative performance.

19 This is just the classic statement , 
)('

]),('.[cov)( 11

t

tt
f cu

xcu

R

xE
p +++=

β
where )(' cu is the

marginal utility, that an asset’s price is lowered if it covaries positively with consumption and of course
the theoretical basis for insurance.

20 This is in the spirit of Brown and Gibbons. See: S. Brown and M. Gibbons “ A Simple
Econometric Approach for Utility Based Asset Pricing Models” Journal of Finance 40, pp 359-382
1985. It should be recognised that a threshold function (L) which is not linear or constant over time will
affect the descriptive statistics or properties of the returns distribution and consequently the Gamma
functions.

21 For a fuller discussion of hedge fund indices see: Brooks C. and Kat H. “The Statistical
Properties of Hedge Fund Index Returns and Their Implications for Investors” Working Paper, ISMA
Centre, University of Reading October 2001.

22 Five tests were utilised: A Stochastic Dominance Test, Wilcoxon-Mann-Whitney, Student’s T,
a known variance Z, and Fisher’s F. Full details are available from the authors on request.

23 There is some evidence that traditional fund managers are biased towards positive skewness,
which would explain, beyond dealing costs, their average apparent inability to outperform benchmark
indices. The intuition here may be that they buy fewer of the high risk investments that are present in
the market. See for example: F.D. Arditti “Another Look at Mutual Fund Performance” Journal of
Financial and Quantitative Analysis, June 1971.

24 The tracking error calculated here is the popular version, the standard deviation of the
difference portfolio.

25 V. Agarwal and N. Naik, “Does Gain-Loss Analysis Outperform Mean-Variance Analysis?
Evidence from Portfolios of Hedge Funds and Passive Strategies.” Unpublished manuscript – London
Business School November 1999

26 Jacob Marschak “Money and The Theory of Assets” Econometrica 6 1938.
J.R. Hicks “Value and Capital” O.U.P. 1946


